
Object Prefetch Filter
A Pattern for Improving the Performance of Object

Retrieval of Object-Relational Mapping Tools

Tim Wellhausen

kontakt@tim-wellhausen.de
http://www.tim-wellhausen.de

January 06, 2008

Abstract: Object-relational mapping tools provide a bridge between object-
oriented programming languages and relational database systems. Although
the concepts of object-relational mapping are well understood, the perform-
ance of object retrieval still is a crucial point in using the tools. Prefetching
objects is a means to improve the performance, in particular to avoid the so-
called n+1 selects problem. This problem arises when a list of objects is re-
trieved from a database and for each object another database call needs to be
executed to retrieve referenced objects. This paper presents a pattern that, if
applied to the implementation of a mapping tool, gives application developers
the choice to explicitly define for every query which part of a network of ob-
jects to prefetch.

Introduction

Over the last years, the usage of object-relational mapping tools has become wide-spread. These
tools diminish the impedance mismatch between object-oriented programming and relational
databases by providing and supporting an object-oriented API to store objects into relational
databases (for a list of available tools, at least for the Java platform, see [C2Wiki]).

Many publications, including individual patterns and pattern languages ([Keller1997], [Keller-
1998], [Fowler2003]), have documented key elements of object-relational mapping. The funda-
mental problems are now well-understood and solved by the available tools. However, the mis-
match still exists. As good as the available tools are, they cannot completely hide the conceptual
difference between objects and relational semantics.

One of the major remaining issues is performance, in particular the performance of object re-
trieval when a network of persistent objects is navigated. Most recent mapping tools support
transparent loading of associated objects on demand. A developer therefore doesn't need to ex-
plicitly fetch associated objects. Instead, this is done transparently by the mapping tool when
the graph of objects is navigated.

Such a comfortable solution to object retrieval comes at a price, however. Used naively, this ap-
proach may lead to severe performance problems because each individual object retrieval opera-
tion causes a round-trip to the database. This behavior is well-known and documented as the n
+1 selects problem (see, for example, [Bauer+2004]).

To understand the n+1 selects problem, suppose that, in an e-commerce system, there is an Or-
der object that contains a set of OrderItem objects, each of which references a Product object
(see Fig. 1 on the next page). When the Order object is retrieved, none of its related order items
are fetched at this moment. If the Order class provides a getOrderItems() method, however,
all order items are transparently loaded when the method is called. Suppose now that all order
items need to be checked for the availability of the ordered products. Every time an order item's
Product object is requested, the database is called to fetch the product data. For n order items,
the database is therefore accessed 1 (order items) + n (products) times in total.

A solution to the n+1 selects problem is object prefetching. If this technique is applied, the num-
ber of round-trips to the database can be cut down significantly by fetching associated objects in
advance, i.e. before they are needed for the first time.

Applied to the example of iterating over order items, the performance of checking the products
could be considerably improved: When the set of order items is loaded, all associated products
are loaded as well. Mapping tools do this either by using an outer join expression or by ex-
ecuting a further select statement.

There has been some research lately on how to support object prefetching best. Some ap-
proaches suggest to profile and dynamically change the prefetch behavior of an application
([Han+2003], [Ibrahim+2006]). As long as these approaches have not yet manifested in main-
stream tools, however, developers still need to cope with prefetching manually.

This paper documents the Object Prefetch Filter pattern that supports the explicit prefetch-
ing of objects. It is based on the idea that a developer defines explicitly which part of an object
graph is needed at a time and that the mapping tool then prefetches the required network of ob-
jects at minimal costs.

The pattern is difficult to apply if it is not supported by a mapping tool itself. Therefore, the
Object Prefetch Filter pattern primarily addresses the authors of mapping tools. Depending

- 2 -

on the design of a mapping tool, it may be possible to implement the pattern as a wrapper on
top of an existing tool. The Object Prefetch Filter pattern therefore also addresses applica-
tion developers who are interested in extending the data access infrastructure of their project.

Running Example

To illustrate the n+1 selects problem and how the Object Prefetch Filter pattern helps to
solve this problem, a real-world running example is given. Consider an e-commerce application
that takes orders for the products a company sells. The domain model for this application is
shown in Figure 1. A costumer may place any number of orders. An order is made up of an ar-
bitrary number of order items, each of which refers to a product. Furthermore, every order has
an invoice and a shipping address that both belong to the customer.

The e-commerce application needs to perform many tasks to keep the shop running. Among
these tasks are:

● Present an overview list of all orders of a customer.

● Present a detailed list of all orders of a customer.

● Generate an invoice.

To generate an overview list of the customer's orders, the system has to retrieve both the cus-
tomer object and all of its associated orders (see dashed line in Fig. 2). If the system has to gen-
erate a detailed list of the customer's orders, it additionally needs to fetch the order items of all
orders and their related products (see additional dotted line in Fig. 2).

To generate an invoice for an order, the system needs to fetch the appropriate Order object and
all associated objects that are shown in the diagram.

If the object-relational mapping tool in use does not support object prefetching, the perform-
ance of both the second and the third task would suffer because of the n+1 selects problem. If
the mapping tool supports prefetching but does not provide a flexible means to define the ob-
jects to be prefetched on a per-query basis, it is not possible to optimize the object retrieval for
all tasks: For some tasks, too few objects are prefetched, for other tasks, too many.

- 3 -

Fig. 1: Domain model of an e-commerce application

Fig. 2: Objects needed to generate a detailed list of a customer's orders

Context

Object-relational mapping tools support the development of object-oriented applications that
store their persistent data in relational databases. Such a mapping tool is able to load and update
persistent objects including all of their references and make the persistent data available at
runtime in form of a network of interconnected objects.

The data access layer of an application integrates and uses such a mapping tool to load, change,
and update persistent data. The application's domain model may contain explicit references
between its entities, which may be 1:1, 1:n, and n:m relations. To implement the domain logic,
the application needs to navigate along these references.

To retrieve persistent objects from a database, object-relational mapping tools provide some
kind of query functionality. Using a query, an application fetches objects and navigates among
their object references to implement a use case or a service. If navigating the network of objects
causes the mapping tool to transparently fetch objects only at the time when they are requested,
the application's performance is likely to drop because of the n+1 selects problem.

To efficiently navigate among a network of persistent objects, the objects that are needed must
be prefetched by the mapping tool, i.e. they must be loaded into memory before they are ac-
cessed.

Problem

How can an object-relational mapping tool support the efficient prefetching of a network of ob-
jects given that the developers know in advance which objects are needed at a time?

Forces

An application could explicitly add outer join expressions to a query to let the mapping tool
prefetch the complete object graph by one select statement. In that case, the SQL statement
that is executed on the database would not only load the data of the target object but also the
data of its associated objects. In case of 1:1 associations, this approach works well. In case of 1:n
and n:m associations, however, this approach leads to a duplication of the data retrieved from
the database. In particular, if several 1:n or n:m associations need to be resolved, result sets grow
huge because they contain cross products of data from the joined tables.

Instead, the application could issue several separate queries for individual parts of an object
graph that is needed in a particular case and manually link the retrieved objects together. This
approach, however, increases the development effort because in each case the developers them-
selves must explicitly cope with the problem how to efficiently prefetch the objects.

As an optimization to avoid the n+1 selects problem, the mapping tool could ensure that
whenever one object of a specific type is loaded, all other objects of the same type that are refer-
enced in the currently loaded network of objects are loaded as well. This approach, however,
only work within the context of a database session, not when the objects need to be available
outside this context. It may also lead to too many objects being prefetched.

A mapping tool could also support prefetching by statically declaring object associations to be
always prefetched: Whenever an object of a specific type is loaded specific associated objects
should be loaded, too. However, as the example has shown, it is very difficult to optimize the
prefetch behavior of a domain model statically because different use cases may have different
prefetch needs. Sometimes too few objects are prefetched, sometimes too many.

- 4 -

Solution

Therefore extend or wrap the query mechanism of an object-relational mapping tool so that an
application may explicitly specify on a per-query basis the objects to be prefetched.

Create a means with which a developer may explicitly define the object associations to prefetch,
i.e. a set of object traversal paths where each path is a concatenation of consecutive object asso-
ciations, starting from the target object of a query. This is the object prefetch filter.

Make it possible to connect an object prefetch filter to a query so that the object-relational map-
ping tool can prefetch all objects that are accessible along any of the traversal paths. This means
that once the target objects are returned to the application, the application may traverse from
any target object along all object associations that are part of the prefetch filter without causing
further database calls.

Implementation

The implementation of the pattern consists of two parts: the prefetch filter that allows the defin-
ition of a network of objects to prefetch and an algorithm that actually prefetches the objects.
Because an implementation of the pattern depends heavily on the facilities of an actual mapping
tool, both parts are illustrated by resolving the example.

Suppose the example e-commerce application needs to present a detailed list of all orders of a
customer. The application thus needs to load the Customer object, its Order objects, their Or-
derItem objects, and each order item's Product reference. To get and prefetch these objects,
the application uses a dedicated query API, provided by the mapping tool.

A prefetch filter must be defined to include all of these objects. The appropriate pseudo code
might look as follows:

Query query = session.createQuery("Customer");
query.setCriteria(...); // set criteria to load the customer by its id
query.setPrefetchFilter(
 new PrefetchFilter("orders",
 "orders.items",
 "orders.items.product"));
Order order = (Order) query.retrieve();

The specification of the object traversal paths may employ the syntax of the object-graph navig-
ation language ([OGNL]).

The mapping tool needs to analyze the prefetch filter to create an object prefetch strategy. This
means that the mapping tool has to decide how many SQL queries to execute to prefetch all ob-
jects as requested. For each association, the mapping tool has two options: include the associated
objects using an outer join statement or execute a separate SQL query.

The mapping tool thus needs to balance two forces: The fewer SQL queries it executes, the
more likely there are cross products that lead to huge result sets. The more SQL queries it ex-
ecutes, the more database round trips add to the overall response time. In general, 1:1 associ-
ations should always be joined in. If an object contains one 1:n or n:m association only, the as-
sociated objects could also be joined in. If multiple such associations exist, further queries are
necessary.

A prefetch filter is not restricted as to the depth of the association graph. The decision how to
load associated objects therefore needs to be applied recursively. If the mapping tool decides to

- 5 -

join in an association, it has to consider what to do with the associated objects' own references:
join them in as well or execute further queries to fetch them.

Additionally, a prefetch filter may contain circular dependencies. The mapping tool therefore
needs to keep track of all loaded objects in order to avoid loading them several times or being
stuck in a circular loop.

To load the Customer object of the example, a mapping tool may reason as follows: At first, the
query's target object, the customer, is loaded; all of its orders are also loaded by joining them in.
This decision is appropriate because joining in one 1:n association does not yet lead to cross
products. To avoid cross products, however, the order items are not joined in.

Having loaded the customer with all of his orders, the mapping tool collects the Order objects'
identifiers. Then it executes another query to load all OrderItem objects that belong to the Or-
der objects loaded before, using the collected identifiers as foreign key references. In order to
fetch the order items' Product objects, these objects are joined in.

Before the query returns the Customer object to the application, the mapping tool needs to con-
nect all objects it has loaded so that the application receives a network of fully interconnected
objects.

Consequences

An Object Prefetch Filter makes it possible to explicitly define a graph of associated objects
to be prefetched when a query is executed. Because an individual prefetch filter may be applied
on a per-query basis, each individual service implementation can be optimized so that only the
necessary objects are retrieved in advance.

The mapping tool knows which objects to prefetch before executing a query. It is therefore able
to optimize the query execution by balancing the number of database round-trips (using appro-
priate join expressions) and the amount of data to be transferred from the database (executing
additional queries to avoid cross products).

Loading a fully initialized network of objects at once simplifies passing these objects out of a
session context, for example to the web presentation layer. In that case the presentation layer
does not need to perform further calls to receive missing objects.

A disadvantage of a prefetch filter is that it must exactly specify in advance which associated ob-
jects must be loaded and that it must remain consistent with the needs of the application logic. If
a prefetch filter is inappropriately set, queries may load too few or too many objects into
memory, leading to further database calls or wasted memory, respectively.

Even if the implementation of the application cannot be corrupted (as long as loading on de-
mand is available), there is a danger of losing performance during maintenance work. When
business logic is changed, great care has to be taken that the prefetch filters are changed accord-
ingly.

Known Uses

The author is only aware of one publicly available mapping tool that implements the Object
Prefetch Filter pattern: Cayenne ([Cayenne]). The experience and knowledge of this pattern
is mainly based on proprietary mapping tools that were developed and used inside companies.

- 6 -

One such proprietary tool, Dots, implements the Object Prefetch Filter pattern as de-
scribed. Using the Dots API, retrieving a Customer object with all of its orders, order items,
and products looks as follows:

Query query = service.createQuery("Customer");
query.setCondition(CB.equal("id", id));
IFilterGraph filter = FilterGraphFactory.createFilterGraph();
filter.addIncludes("orders", "orders.items", "orders.items.product");
IQueryResult result = service.execute(query, filter);
Customer customer = (Customer) result.getFirstObject();

The open source mapping tool Cayenne also implements the Object Prefetch Filter pattern.
Using Cayenne's query API, loading an Order object with all of its associated objects being
prefetched looks as follows:

SelectQuery query =
 new SelectQuery(Order.class,
 Expression.fromString("id = "+id));
query.addPrefetch("customer");
query.addPrefetch("shippingAddress");
query.addPrefetch("deliveryAddress");
query.addPrefetch("items");
query.addPrefetch("items.product");
Order order = (Order) context.performQuery(query).get(0);

To give a counter-example, Hibernate ([Hibernate]), a wide-spread mapping tool, currently
does not support the pattern as described. However, it provides two prefetch strategies. First,
when creating a query, an application may define which objects should be prefetched by joining
them in. Using Hibernate's criteria API, the example of creating an overview list of all orders of
a customer looks as follows:

Criteria criteria =
 session.createCriteria(Customer.class).
 add(Expression.eq("id", id)).
 setFetchMode("orders", FetchMode.JOIN);
Customer customer = (Customer) criteria.uniqueResult();

Although it is possible to prefetch objects to which there are 1:n or n:m relations, the Hibernate
team advises against this because of cross products.

Besides dynamic prefetching, Hibernate also supports statically defined prefetching. Using ap-
propriate mapping meta data, it can be specified that all objects that are involved in an associ-
ation between specific types should be fetched from the database in blocks. The following meta
data specification shows an example of this feature:

<class name="customer" table="customer">
 <set name="orders" fetch="subselect">
 <key column="customer_id"/>
 <one-to-many class="Order"/>
 </set>
</class>

The declaration fetch=”subselect” makes Hibernate fetch all Order objects from all custom-
ers retrieved by a query when the Order objects of one customer are accessed for the first time.
This behavior therefore also avoids the n+1 selects problem but not on a per-query basis.

- 7 -

Conclusion

The Object Prefetch Filter pattern provides a solution for solving the n+1 selects problem
on a per-query basis. The paper explained how an object relational mapping tool could imple-
ment the pattern: it needs to provide an API to let an application define graphs of objects to
prefetch and needs to implement an algorithm that efficiently prefetches objects as requested.
By setting filters, an application is thus able to explicitly define the needed network of objects,
therefore optimizing the execution of application logic on a per-query basis.

Acknowledgements

Many thanks go to my EuroPLoP shepherd Uwe Zdun who gave a lot of insightful feedback
and to the participants of the EuroPLoP 2007 workshop who pointed out several key aspects
for improvement.

References

[Bauer+2004] C. Bauer, G. King. Hibernate in Action. Manning, 2004

[C2Wiki] Portland Pattern Repository's Wiki: Object Relational Tool Comparison, 2007,
 http://c2.com/cgi/wiki?ObjectRelationalToolComparison

[Cayenne] Apache Cayenne, http://cayenne.apache.org

[Fowler2003] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, 2003

[Han+2003] W.-S. Han, Y.-S. Moon, and K.-Y. Whang. PrefetchGuide: capturing navigational
 access patterns for prefetching in client/server object-oriented/object-relational DBMSs,
 In Information Sciences: an International Journal, 2003

[Hibernate] Hibernate, http://www.hibernate.org

[Keller1997] W. Keller. Mapping Objects to Tables – A Pattern Language. In Proceedings of the
 2nd European Conference on Pattern Languages of Programming, 1997
 http://www.objectarchitects.de/ObjectArchitects/papers/Published/ZippedPapers/
 mappings04.pdf

[Keller1998] W. Keller. Object/Relational Access Layers – A Roadmap, Missing Links and
 More Patterns. In Proceedings of the 3rd European Conference on Pattern Languages of
 Programming, 1997
 http://www.objectarchitects.de/ObjectArchitects/papers/Published/ZippedPapers/
 or06_proceedings.pdf

[Ibrahim+2006] A. Ibrahim, W. Cook. Automatic Prefetching by Traversal Profiling in Object
 Persistence Architectures. In Proceeding of the 20th European Conference on Object-Oriented
 Programming, 2006

[OGNL] Object-Graph Navigation Language, http://www.ognl.org

[Wellhausen2004] T. Wellhausen. Query Engine – A Pattern for Performing Dynamic Searches
 in Information Systems. In Proceedings of the 9th European Conference on Pattern Languages
 of Programming, 2004
 http://www.tim-wellhausen.de/papers/QueryEngine.pdf

- 8 -

[Wellhausen2005] T. Wellhausen. User Interface Design for Searching – A Pattern Language.
 In Proceedings of the 10th European Conference on Pattern Languages of Programming, 2005
 http://www.tim-wellhausen.de/papers/UIForSearching.pdf

- 9 -

