
Expand and Contract
A Pattern to Apply Breaking Changes to Persistent Data

with Zero Downtime

Tim Wellhausen

kontakt@tim-wellhausen.de
http://www.tim-wellhausen.de

v1.0, July 18, 2018

Intent

The Expand and Contract pattern provides a way to implement breaking changes to a system in a
safe manner. The pattern is particularly helpful in an environment where maintenance downtime is
unacceptable. This paper examines the details on how to apply the pattern when the structure of
persistent data needs to be changed. The paper is supposed to be a useful read for every software de-
veloper who operates in such an environment.

Introduction

The Expand and Contract pattern, also known as Parallel Change, has already been documented
elsewhere ([1], [2]). The pattern provides an approach to changing interfaces without breaking sys-
tems. The pattern is applicable to all kinds of interfaces, such as interfaces in a programming lan-
guage, REST APIs or database schemas.

The pattern’s main idea is to first expand an interface by introducing a new structure without break-
ing the old one. The old structure is kept in parallel as long as some client code still accesses it. Once
the old structure is not needed any more, it can be safely removed.

Applying the pattern on persistent data in a database is particularly challenging because existing data
needs to be migrated from the old into the new structure. Doing this was still fairly straight-forward
at the times when you could shut down a system temporarily to do some maintenance. Nowadays,
many systems need to operate 24/7 without any maintenance downtime and structural changes of
persistent data may take a long time due to the size of the data to migrate.

This paper therefore focuses on the applicability of the pattern in the context of changing the struc-
ture of persistent data. While the pattern probably can be applied to various types of databases, this
paper assumes that the data to change resides in a relational or document database. This means that
there is an explicit or implicit data schema that the application that operates on the data can rely on.

In order to ensure that a system is running all the time while transitioning data from an old into a
new structure, the overall changes need to be deployed in several distinct steps. As these steps are
crucial to succeed in applying the pattern, they are examined in detail. An example gives further in-
formation.

Let's start by rephrasing the pattern and putting it into the required context.

The Expand and Contract Pattern

A system operates on a central database. The database, which could be a relational or a document
database, contains data in some structured form based on an explicit or implicit schema. Over time,
system requirements change and by implementing those changes, the database schema and thus the
actual data needs to be modified. Some schema modifications are backwards-compatible in nature
(such as adding new tables/collections or columns/fields). Other modifications break existing code
(such as changing the cardinality between some entities from 1:n to n:m).

In order to achieve 24/7 operations, all system components exist redundantly. In particular, there
are multiple instances of the database system and multiple instances of the application server. De-
ployments of updated system components are done instance by instance, which means that some in-

stances are unavailable during a system update. The system might be a large monolithic application,
a small microservice or anything in between.

Implementing breaking changes to the structure of persistent data must not interfere with the
operation of the system as a whole.

The following forces make it difficult to find a good solution.

• Uptime. The system must be in operation all the time. Maintenance downtime to perform
isolated data migrations and code deployments are not available.

• Time-to-market. Code changes need to be deployed as soon as possible. Continuous de-
ployment is reality, frequent deployments are the norm.

• Testing. Things can go wrong. You therefore want to reduce the risk of breaking the system
by deploying code changes to some nodes first in order to test them. Rolling forward is the
typical attitude to fix problems.

• Rollback. Still, sometimes things can go so wrong that rolling back the latest change is the
only option to quickly restore the system to a healthy state. Even when you implement
breaking changes to the database, it should be possible to roll back.

• Large data sets. Migrating data from an old structure into a new structure takes some time.
The larger the data set is, the longer migrations run. Still, a migration must not interrupt the
operation of the production system.

• Computational resources. A successful application often is in heavy use. Scaling up the ap-
plication and database instances is not always an option. Thus, additional load and space us-
age should be avoided.

• Consistent data. During the deployment of a new release, typically there is a phase in which
some application instances still run old code whereas other application instances already
run new code. Data records must not break even if different versions of the code run
against the database.

• Consistent data structure. All data in the database should eventually be kept in the same
structure. Even if the database allows entities in the same space to have a different structure
(e.g. in a collection of documents), this is not desirable as it would complicate the code to
cover all those different structures in the long term.

* * *

Therefore:

Implement breaking changes in multiple steps so that each individual step does not break the
system and can be reverted. First, expand the system by adding the new structure to the data-
base. Then migrate the existing data into the new structure while the system redundantly
writes into both the old and the new structure. After the migration is done, contract the system
to remove the old data structure and the old code.

The following diagram outlines these steps that are described in detail below:

Each step needs to deployed separately and after each step, you need to make sure that the system is
fully operational before you can apply the next step.

Every step is illustrated by a small diagram that shows the state after the step has been applied.

Step 0: Initial state

Initially, the application code (C) performs some read and write operations on a data
structure (the old structure – O).

The new structure (N) has been thought through but does not exist yet in the database.

Step 1: Introduce new structure and update application to write into both structures

- 2 -

Introduce

New Structure

Migrate
Data

Operate on

New Structure
Stop Writing

in Old Structure
Delete

Old Structure

C

O

The first step introduces the new data structure (i.e. new tables/collections, new col-
umns/fields) to the database. In case of a relational database, the new structure needs
to be explicitly created. The application code needs to be changed in such a way that
data is written into both the old and the new structure whereas the system continues
to read the data from the old structure.

This means, from now on the database stores some data redundantly until the old structure is
deleted by the last step, thereby increasing the space that the data consumes. This also means that
the number of write operations on the database increases during this period.

The new structure can be prepared to hold data that did not exist before. However, some con-
straints cannot be enforced yet, e.g. mandatory columns or fields, as the system still operates on the
old structure, i.e. there is not yet any data available to store into new fields (unless it can be derived
from existing data).

At this point, the old data structure is written as before. All new and changed data records also get
written into the new structure. This step can be easily rolled back. If necessary, the new data struc-
ture can be removed from the database.

Step 2: Migrate data into the new structure

Now, all relevant data needs to be migrated from the old into the new structure. The
old structure is still kept untouched. Depending on the data size, this step may take a
considerable time. It thus needs to run in the background, maybe deployed on a sepa-
rate server instance. This process does not interfere with the correctness of the applica-
tion’s operations because the application still only reads data from the old structure.
However, the migration could have an impact on the performance of the production
system.

The migration process may skip those entities that have already been written into the new structure
as part of some data modifications after the deployment of step 1. In order to ensure data consis-
tency, the migration code must produce the same result as the application code deployed by step 1.
However, some error handling (such as optimistic or pessimistic locking) is important to cover the
case when both the application and the migration touch the same data records.

This step can also be easily reverted. If necessary, the new data structure needs to be cleaned and the
migration started anew.

Step 3: Operate on new structure

This step makes the transition to read data from the new structure while still writing
into both the old and the new structure.

The first two steps ensured that data is now consistently available both in the old and
the new structure. Thus, reading the data from either source leads to the same result.
Rolling back this step therefore can also be safely done.

The reason to change data typically comes from some changed business requirements that also in-
troduce new features to a system. If this step involves the rollout of a new UI, then reverting this
step is noticeable to the users.

If some new fields were already introduced to implement the new functionality in step 1, then it is
possible to fill these fields now and enforce some missing constraints. Be aware that in such a case, it
is not possible any more to keep the old data structure completely consistent with the new structure
(because the old structure does not have these new fields). Rolling back from this step could result
in loosing data that was generated by the new functionality. As alternative, you could postpone the
introduction of new fields until this step has been successfully deployed.

Step 4: Stop writing into old structure

The first step to contract the system is to cease from writing into the old structure.
From now on, database reads and writes both affect only the new structure.

Reverting this step cannot be easily done anymore other by restoring data from a
backup. So, reverting also comes with a data-loss. However, there should be little need
to revert as the old structure was not in use any more after the preceding step.

Step 5: Delete old structure

Once the preceding step has been rolled out to all servers, then there is no write opera-
tion on the old structure any more. Thus, now, the old structure can be safely deleted
from the database.

* * *

- 3 -

C

O N

C

O N

C

O N

C

O N

C

N

Following the Expand and Contract pattern brings a couple of advantages.

• Uptime. Incompatible changes to the data structure can be deployed without any downtime
of the system.

• Testing. The pattern requires the ability to run application instances with old code and new
code in parallel. This makes it easy to deploy code changes to a few instances first in order
to test it.

• Rollback. Every single step can be rolled back once it has been deployed. However, it is not
guaranteed to revert multiple steps.

• Large data sets. The data migration is performed as a step separate from all others and can
be executed in the background. It does not modify any data that is read by the production
system and should therefore not interfere with the production system. Even if the migra-
tion process takes a long time, this just extends the time until the next step can be taken.

• Consistent data. In the end, all data is consistent and redundancy-free.

• Consistency data structure. After applying all steps, all data is stored in the new data struc-
ture only.

However, the pattern also has liabilities.

• Time-to-market. If done properly, the deployment of a breaking change needs some time
until all steps have been successfully finished. Even small changes that could have been
done quickly in the old times where system downtime was available, can now take days or
weeks until they are fully rolled out.

• Computational resources. While the system is expanded, some data is kept redundantly,
therefore increasing the space that the data occupies. At the same time, the number of write
operations increases as the application writes into both the old and the new structure. Addi-
tionally, the migration process adds load to the database.

• Consistent data: In between the transition, data is available redundantly in the old and the
new structure. This could be a problem if data is modified by some tools outside the scope
of the system, e.g. by some manual intervention.

• Effort. Because of the lengthy process to perform each step individually, the application of
the pattern involves a lot of effort. There might be a desire to take shortcuts. In some situa-
tions, it may be feasible to combine steps (e.g. if writing data is only done once a day by
some nightly job). In other cases, it may introduce subtle data inconsistencies that are not
obvious when they happen.

Example

To give an example, suppose you are a developer at an online store. The company’s competitive ad-
vantage has always been its ability to quickly improve the customers’ experience whenever there
was an opportunity. Needless to say that the online store has to run 24/7 to never loose a customer
because of some system maintenance downtime. There is a cluster of application instances and an-
other cluster of database instances.

Also suppose that all customer data is stored in a relational database system. Data about a customer
is kept in a possibly very large customer table. For every customer, the system keeps track of multi-
ple delivery locations so that the customer can choose among those locations when placing an order.
One such location may be the customer’s home address, another the place of work. These delivery
locations are stored in a separate table with a foreign key reference that refers to the customer table
as shown in the following diagram:

One day, your product owner explains to you a new feature that the company would like to imple-
ment. In many cities, the company is going to set up delivery locations at places such as grocery
stores and gas stations. The idea is to let the customers choose such a location for the delivery of

- 4 -

Existing data structure with 1:n relationship

goods so that they can pick up their parcels there whenever it is convenient to them. In the online
store, the system should suggest such locations to customers who live nearby one of them. For a
customer that chooses such a location, it should behave and feel just like another personal delivery
address.

As the data of these delivery locations need to be maintained by the company, it is not feasible to
keep the current data structure as that would make it necessary to create a new entry for every cus -
tomer. The current 1:n relationship between customers and delivery locations therefore needs to be
changed into an n:m relationship so that multiple customers can share the same delivery location.

As you know about the Expand and Contract pattern, you start the development right away. You
decide that, at first, you only transform the data structure without introducing any new features.

Step 1. In the database you leave both the customer and the delivery_location tables as they are but
you add the new mapping table customer_2_delivery_location. This change can be deployed into
production at once. In parallel, you expand the code so that for every new delivery location an entry
is written into the mapping table. Look-ups for delivery locations are not touched, i.e. the system
still evaluates the delivery_location table’s foreign key reference. But from now on, the system cre-
ates mapping entries for all new delivery locations.

Step 2. Next thing to do is to migrate all existing delivery locations. The migration is quite straight-
forward: For every delivery address in the system, you need to write a new entry into the new map-
ping table. As the production system does the same for new delivery locations, you need to take
care not to create duplicate entries. The migration is run on a separate server instance not to inter-
fere with the production system. As the customer table is large, it takes a while until the new map-
ping table is filled.

Step 3. Once the migration has completed, the new data structure is fully initialized and can be used
to read from. The system keeps on writing both the foreign key into the delivery_location table and
creating mapping entries in customer_2_delivery_location. However, operations to fetch delivery
locations for a customer are changed so that only the mapping data in customer_2_delivery_location
is taken into consideration. In order to test the changes in production, the new code is first deployed
to a single instance of the application cluster. After verifying that everything works fine, the code is
deployed to all other instances one by one.

Step 4. From now on, there are no read operations any more on the foreign key in delivery_loca-
tion. But the system still writes into it. So, the next deployment removes the foreign key constraint
from the table column and disables writing the foreign key. The corresponding field can also be re-
moved from any domain-related code.

Step 5. Once the latest deployment has been rolled out to all servers, there are no write operations
any more on the foreign key column in delivery_location. Now it is safe to remove the column all -
together.

Finally, the new mapping table between customers and delivery locations is fully in place and the
system is prepared for the implementation of the actual new requirements.

Conclusion

The requirement to keep a system up and running all the time gives software developers a hard time
when they need to implement breaking changes to the database. The Expand and Contract pattern
describes an approach that allows such changes to be done in a safe manner. This paper described in
details how to apply it by performing a number of steps, resulting in up to five deployments until
the changes are fully in effect.

Acknowledgments

I’d like to thank Uwe van Heesch for his insightful review comments that helped me a lot to im-
prove the paper. Also, I’d like to thank Julio Moreno, Fei Li, Tiago Boldt Sousa and Andreas Seitz
for their valuable contributions at EuroPLoP 2018.

- 5 -

Target data structure with n:m relationship

References

[1] Michael T. Nygard: Release It!, Chapter on Zero Downtime Depoyments, O'Reilly, 2007

[2] Danilo Sato: Parallel Change, https://martinfowler.com/bliki/ParallelChange.html

- 6 -

