
Entity View
Simplify Data Access in Domain-Driven Applications

Tim Wellhausen
kontakt@tim-wellhausen.de

http://www.tim-wellhausen.de

v1.0, August 13, 2015

Intent
In a domain-driven application, the Entity View pattern can be used to provide cohesive information
about an entity that cannot be retrieved from the entity directly. The pattern is particularly useful if
some client requires data about an entity that is stored beyond the entity's boundaries. In that case a
service facade aggregates the relevant data and provides it in form of a dedicated object: an entity
view.

Introduction
Domain-driven design [1] is an approach with a focus on the business domain. Domain-driven de-
sign is often applied in the context of enterprise information systems with complex data models. In
such a system, data is typically spread among many places where boundaries between the entities
limit their accessibility from each other. In particular, the advent of polyglot persistence [9] has in-
creased the number of database systems where data of a single application is kept. In addition, virtu-
ally every enterprise information system requires data from some other systems that can be retrieved
by remote service calls only.

Such a complexity comes at a price: the implementation of a single use case may require calls to sev-
eral services and repositories to gather all data that is needed. For example, a single web page may
render information from multiple sources. Or the application may need to provide detailed infor-
mation about an entity to a full-text index.

A solution to this problem is the creation of objects that aggregate and carry data. In the context of
remote interfaces, the Data Transfer Object pattern [5] is an established means for this purpose. The
Entity View pattern that is presented here is similar to the Data Transfer Object pattern. The intent
of an entity view also is to aggregate and transfer data. However, entity views are an integral part of
the domain model and only used within the application. The section on the Entity View pattern itself
discusses the distinction between both patterns in detail.

This paper has three parts: the first part gives some background information on domain-driven de-
sign that sets the context for the Entity View pattern. The second part introduces the Entity View
pattern. And the third part gives an in-depth example how to apply the pattern.

Domain-Driven Design
Domain-driven design [1] is an approach to software development that places focus on the business
domain. It emphasizes the importance of a well-designed domain layer that deeply reflects the actual
domain and makes it easy to implement domain-related functionality in the system.

The domain model is a model that encapsulates both the data and the behavior of the conceptual do-
main. In his book “Domain-driven Design” [1], Eric Evans defines the building blocks of a domain
model, namely, entities, aggregates, repositories and services (among others).

An Entity is a cohesive data structure that has a unique identity. Entities represent the data upon
which the system is built. Entities are connected to each other by associations, either directly in form
of traversable references in an object graph or indirectly by identifiers of the foreign entity.

An Aggregate is a collection of entities that are strongly connected to each other. Each aggregate has
a root and a boundary. The aggregate root should be the only entity of an aggregate to which entities
from outside the aggregate refer. Often, the life cycle of all entities of an aggregate is the same. When
the aggregate root is deleted, for example, then all other objects of the aggregate are also deleted. All
entities that are directly navigable from an aggregate root are, by definition, within the aggregate's
boundary. Associations to entities of a different aggregate cross the boundary between the two ag-
gregates. A boundary means that there is no direct object relationship between the entities but only a
reference in form of the identifier of the foreign entity. As a consequence a client typically needs to
explicitly retrieve entities beyond the boundary from a repository or a service. Such boundaries ex-
ist, for example, because of performance issues or security constraints. Boundaries also exist if data
is distributed over multiple data sources.

A Repository is an object that provides facilities to search for entities of a specific type and to load
the entities from the data storage or write them back to it. Typically, all database access code of an
application is encapsulated by some repository.

A Service is an object that encapsulates business logic or a technical implementation that does not
belong to a single entity. Services can be restricted to be accessible only from within the application
or they can be exposed to be accessible from remote clients.

Figure 1 gives an example of these concepts in form of a simplified domain model for an online
store: a Purchase Service exposes functionality to buy products. It relies on two repositories for data
retrieval and storage: Order Repository and Product Repository. Each of these repositories give ac-
cess to an aggregate: the Order Aggregate encapsulates an Order with its Order Items and the Prod-
uct Aggregate encapsulates a Product with its Product Descriptions. An order object points to all of
its order item objects and a product object points to all of its product description objects. However,
order item objects refers to products only by the products' identifiers, i.e., there are no direct object
relationships from order item objects to product objects.

 Fig. 1: Example of a domain model

The presented building blocks of domain-driven design make it possible to create complex, yet
maintainable software systems. However, they do not focus on non-functional requirements such as
performance. Although premature performance optimizations of small efficiencies are considered
harmful, critical decisions should be taken upfront [8].

The Entity View pattern adds another building block to domain-driven design that tackles perfor-
mance issues and some other non-functional requirements such as the complexity of inter-layer
communication.

The Entity View Pattern
Suppose that a software application such as an enterprise information system has a complex domain
model with many entities and associations between them. Services and repositories provide access to
the entities. The entities may be stored in multiple local databases (such as a relational database, a
document database and a full-text search engine) or they may be managed by external systems that
are accessed by remote service calls.

Also assume that the domain model is part of a layer whose responsibility is to provide data and
business logic to other layers within the same application. Clients of the domain layer need access to
the application's data for various reasons. For example, the UI layer needs to show information to
the application's users. Or the application integrates a full-text search engine that needs to be up-
dated when some data changes.

- 2 -

In general, the domain model allows clients to traverse associations between entities within the enti-
ties' boundaries. However, boundaries cannot be crossed by traversing object references. Instead
data beyond a boundary needs to be explicitly fetched via a call to a service or repository.

From the perspective of a client, boundaries in the domain model are painful. Every boundary
that needs to be crossed by a client results in additional development effort in order to retrieve
data beyond the boundary. But technical implications from the data storage or domain model
design should not hinder the development of the client.

The following forces make it difficult to find a good solution.

• Domain model design. Boundaries in the domain model are an essential means to ensure the
integrity and stability of the domain model. Experience has shown that small aggregates
should be favored against large aggregates [2]. But small aggregates lead to a high number of
boundaries.

• Performance. The number of round-trips between a client and a service significantly influ-
ences the overall performance of the client application. A boundary in the domain model
typically results in an additional round-trip to gather the data beyond the boundary. In case
of lists of associated entities, the n+1 selects problem [6] might apply. In that case one more
call is needed for every single associated entity. In addition, if a client issues many small re-
quests for related data then it is difficult to optimize the implementation of the service in-
ternally.

• Complexity. The more services and repositories are involved in providing data for a client,
the more demanding the development of the client becomes: software developers need to
know more services and there are more ways to introduce bugs or slow down the applica-
tion by inappropriate usage of the services. On the service-side, the more services are made
available to clients, the more effort is needed to maintain these services in the long run.

• Security. Access to some or all of the data may be restricted. Without proper permissions,
such data may not be transmitted to the client. Every service that makes restricted data ac-
cessible must thoroughly check the client's permissions. On the client side, every service
call for restricted data must be carefully designed in order to handle limited access to the re-
quired data.

* * *

Therefore:

Introduce an Entity View for every entity whose boundaries hinder client development. Such
an entity view is an object that encapsulates both the entity itself (or parts of it) and additional
information about the entity that lies beyond the entity's boundaries. Plus, it may contain busi-
ness logic that operates on the encapsulated data.

An entity view is an object that can be designed as needed to store arbitrary data about an entity. The
intention is to keep all information about an entity in a single place to conveniently carry that infor-
mation anywhere in the application. In general, a client that receives an entity view should get all in-
formation that there is about the entity.

Entity views may contain references to any entities of the domain model. Existing data structures
can be reused as long as there is no need to hide some data, for example, because of security con -
straints. This means, an entity view may just be a container with a reference to the entity itself plus
references to a couple of related entities. But an entity view may also copy data from entities and in-
corporate a dedicated data structure if this simplifies data access or increases data integrity.

The aggregation of an entity view's content should be performed by a Service Facade [4], in particu-
lar if multiple complex operations are necessary to fetch the required data. According to Deepak
Alur, a service facade is meant to “encapsulate and expose business behavior in a coarse-grained
manner to the application clients and hide the complexities of business components and their inter-
actions”. A client should only interact with the service facade and retrieve all required data in a sin-
gle entity view at once. A call to the service facade may thus result in multiple operations, for exam -
ple to retrieve data from several data sources or even from external systems.

An entity view is typically meant to be read-only. The data is fetched from multiple places and put
together into a structure different from its original form. While it is possible to write back changes
to entity views, a read-only approach is significantly easier to accomplish. In that respect, entity
views are similar to views in a relational database. A database view allows the retrieval of data that is
stored in multiple tables via a single operation. The client of such a view does not need to know
where the original data is located and how the tables are related to each other. In addition, a view can

- 3 -

provide processed data, i.e., information that does not exist in the same form in any table. However,
it is rather difficult to support writing back changes via a view.

The service facade is responsible to check the client's permissions. Depending on these permissions,
some pieces of data may be omitted. In that case, the entity view should be designed in a way that all
of its data is optional. If a permission is missing, the view just does not hold the respective data.

Introducing entity views into the domain model of an application brings a couple of advantages.

• Domain model design. The design of the domain model can be focused on the needs of the
model itself. Entity views compose an additional layer in the domain model and, to some
degree, decouple the demands of clients from the demands of the domain layer.

• Performance. Entity views reduce the number of round-trips between clients and the do-
main layer (and possibly external data sources). In addition, the implementation of a service
facade facilitates improving the performance of fetching the required data. As entity views
are typically read-only, less transaction overhead may occur when fetching the data from
their data sources.

• Complexity. An entity view reduces the number of services that need to be accessible to
clientss. Client developers need to know fewer services and service developers need to
maintain fewer services that are available to other system layers.

• Security. All security checks are bundled within the service facade. While implementing
these checks might not become easier, the implementation is at least kept at a single place.

However, the entity view pattern also has liabilities.

• Effort. Entity views are meant to reduce the development effort of the domain layer's
clients. Nevertheless, they increase the effort on the domain layer. Depending on the com-
plexity of either side, the additional effort on the domain layer might outweigh the reduced
effort on the clients.

• Performance. If different clients have different needs in what data they need, the service fa-
cade needs to retrieve all data that is needed by any of the clients. Odds are that for every
individual call from a client, more data is fetched than needed. Applying a Specification [1]
or an Object Prefetch Filter [7] might help in this case but increases the complexity even
more. A specification “allows a client to describe (that is, specify) what it wants without
concern for how it will be obtained”. A specification allows a client to dynamically describe
which entities it needs, whereas an object prefetch filter allows a client to dynamically de-
scribe which pieces of data is needs per entity.

• Complexity. As entity views may contain business logic, there is a risk that the required
business logic becomes duplicated from the main entities of the domain model.

The Entity View pattern shares several properties with the Data Transfer Object pattern [5]. Ac-
cording to Martin Fowler, a data transfer object is “an object that carries data between processes in
order to reduce the number of method calls” in the context of a remote interface. Data transfer ob-
jects are defined together with interfaces that expose parts of the domain model to external systems.
They are made to optimize inter-process calls by providing as much data as needed for every such
call. But because data transfer objects are expected to be serializable and transported to other sys-
tems, they do not contain any business logic and may not contain any data that must be kept confi-
dential inside the application. Data transfer objects are not part of the domain model of an applica-
tion. Rather, they decouple the external interface from the domain model.

The Entity View pattern is similar to the Data Transfer Object pattern in several ways: data is aggre-
gated and carried according to the needs of some clients. But entity views are meant to be an integral
part of the domain model. The can contain business logic, they do not need to be serializable and
they may keep references to entities – there is no need to duplicate data structures. Entity views can
be used to move aggregated data between layers of an application and processed wherever the data is
needed. They do not belong exclusively to the definition of a service.

Entity views only belong to the application itself. They are not part of a published interface that is
exposed to external systems. Therefore, if some entities of the domain model change, the entity
views may change accordingly. Data transfer objects, on the other hand, are expected to remain un-
changed in order to keep public interfaces compatible.

There are several variants how you can use Entity Views.

View per Entity. Create an entity view for every entity whose data needs to be available to a client.
This variant is useful if the clients' demands on data vary little. Every client receives the same entity

- 4 -

view when data about an entity is requested. Creating one entity view per entity might lead to large
entity views that contain everything that is to be known about the entities while only some aspects
of that data is needed for every individual use-case.

View per Use-Case. Create an entity view for every complex use-case. This variant is useful if the
clients' demands on data vary a lot. For every use-case, a dedicated entity view contains exactly the
data that is relevant to the clients in the context of that use-case. Creating views per use-case can lead
to a proliferation of entity views (such as multiple views per entity) but every entity view contains
no more data that needed. Therefore, the creation of the entity views are as cheap as can be.

Preview / Detail View. Create one entity view with a small subset of data about an entity and an-
other entity view with a complete set of data. This variant is useful if a client sometimes needs lists
of entities with minor details and sometimes needs full data of an entity, such as for a master-detail
user interface.

Static View / Dynamic View. Create one entity view that contains all static data, i.e., the information
that does not change in the context of the client's interaction. Create another entity view that con-
tains all dynamic data, i.e., that information that does change in the same context. This variant is use-
ful if a relevant part of an entity's data changes during an interaction while another part does not
change. By creating two separate views, the data that needs to be fetched after every interaction is re-
duced to a minimum.

In the domain model of an application, all of these variants can coexist.

Example
A car company develops an online store to sell their cars directly to customers. At the heart of the
online store, there are two pages on which a customer chooses a car model and picks additional ac-
cessories. The second page in particular shows a lot of information about the chosen car model: the
technical specification, pictures, the available accessories, the price to pay, special offers to provide
financing and so on. In order to serve international customers, all information needs to be shown in
the customer's local language.

The software development team has already set up a domain model that keeps most of the data in a
local database: the available car models, their technical specifications and available accessories. How-
ever, some data is retrieved from other systems on demand, such as the calculated price and pictures
of the vehicles (that must exactly match the chosen accessories).

For the development of the user interface, the team decides to decouple the UI layer from all details
how to retrieve data from the internal and external services. Rather, they introduce a service facade
that handles the calls to both the domain layer and the external systems. See figure 2 for an overview
of the architecture of the online store.

Fig. 2: Overview of the online store's architecture

The domain layer consists of entities that hold data, repositories that retrieve the data from the data-
base, services that implement business logic and technical services that interact with external systems.
Figure 3 shows a conceptual overview of the domain model's entities and their boundaries.

A key entity is the Car Model with its available Accessories. These entities form an aggregate and can
be fetched together from the local database. Car Model Specifications and their Car Part Specifica-
tions form another aggregate. Descriptions for car models and accessories stand on their own because
they exist in many languages but are only needed in one specific language at a time. Base prices and
calculated prices with additional financing details are separate aggregates as well because they need to
be fetched from an external price calculator. The same applies to pictures. They also need to be
fetched on demand from an external picture generator. A car configuration keeps references to the
car model and the accessories that a customer has picked in the online store.

- 5 -

 Fig. 3: Entities, their associations and boundaries

Because of the boundaries between the aggregates, the actual domain model implementation does
not allow traversing the objects from one aggregate to another. Rather, for every crossing of a
boundary, the associated entities need to be fetched explicitly by a call to a repository or a service.
For this reason, the domain model also contains such a repository or service for every aggregate root
(see figure 4).

Fig. 4: Repositories and their respective aggregate roots

Now, the development teams needs to decide how the service facade should be designed so that the
user interface layer can conveniently access the data. The page that shows the available car models
with their default configurations needs only a subset of the available data for a single car model but
for several car models at once. Thus, a Car Model Preview is added to the domain model (see figure
5). The respective Car Configuration Facade retrieves preview objects for all car models, each of
which filled only with the most relevant data about the car models.

Note that the preview object contains object references to the domain model entities Car Model,
Base Price and Picture but not to a Description object. Rather, it contains a copy of the description
text in the requested language.

Fig. 5: Car model preview and dependent objects

The page on which a customer configures the car needs very detailed information about the car
model. So, a detail view seems like a good way to go. But every action of the customer on the web
page may change some of the shown data (e.g., the price to pay, available accessories). Thus, the team
decides to create two entity details views: a Static Car Configuration Detail View (see figure 6) and a
Dynamic Car Configuration Detail View (see figure 7).

- 6 -

 Fig. 6: Static car configuration detail view and dependent objects

The static entity view contains the descriptions for the car model and all accessories in the requested
language and holds references to all domain model entities whose data does not change during the
configuration of a car.

 Fig. 7: Dynamic car configuration detail view and dependent objects

The dynamic entity view holds references to all domain model entities whose data changes during
the configuration of a car: the price to pay based on the currently chosen accessories and the pictures
that match the current car configuration.

In order to render the car configuration page initially, the UI layer loads both the static and the dy-
namic view once. Every time the customer modifies the car's configuration, the UI layer reloads the
dynamic view and updates the user interface accordingly.

Using this approach, the development team quickly succeeds in creating the user interface. How-
ever, during the first user tests, a new requirement comes up: a customer should be able to download
a car configuration as a PDF document.

A member from another team with great experience in creating PDF documents joins the online
store team. After a close look at the service facades and the available entity views, the new member
can easily get access to all data that needs to be presented in the PDF document. In-depth knowl-
edge of the domain model and the surrounding external systems is not necessary to start coding.

Conclusion
The Entity View pattern fills a gap in domain-driven design. While the idea behind the pattern
(transferring data in a dedicated data structure) is not new, the pattern's focus on non-functional re-
quirements should help application developers to improve the design of their systems.

Acknowledgments
I'm very grateful to my shepherd Christian Köppe who helped me to find a good structure for my
paper and gave me many insightful suggestions for improvements. I'd also like to thank the partici-
pants of my workshop group at EuroPLoP 2015 for all of their productive comments.

References
[1] Eric Evans: Domain-Driven Design, Addison Wesley, 2004

- 7 -

[2] Vaughn Vernon: Effective Aggregate Design, http://dddcommunity.org/library/vernon_2011

[3] Tim Wellhausen: Business Logic in the Presentation Layer, Proceedings of EuroPLoP 2006,
 http://tim-wellhausen.de/papers/BusinessLogic.pdf

[4] Deepak Alur, John Crupi and Dan Malks: Core J2EE Patterns:
 Best Practices and Design Strategies, Prentice Hall, 2003

[5] Martin Fowler: Patterns of Enterprise Application Architecture, Addison Wesley, 2003

[6] What is the n+1 selects issue?,
 https://stackoverflow.com/questions/97197/what-is-the-n1-selects-issue

[7] Tim Wellhausen: Object Prefetch Filter - A Pattern for Improving the Performance of Object
 Retrieval of Object-Relational Mapping Tools, EuroPLoP 2007,
 http://tim-wellhausen.de/papers/ObjectPrefetchFilter.pdf

[8] Donald Knuth: Structured Programming with go to Statements, ACM Journal Computing
 Surveys, Vol 6, No. 4, Dec. 1974. p.268

[9] Martin Fowler: Polyglot Persistence, http://martinfowler.com/bliki/PolyglotPersistence.html

- 8 -

