
Binonymizer – A Two-Way Web-Browsing
Anonymizer

Tim Wellhausen
Gerrit Imsieke

(Tim.Wellhausen, Gerrit.Imsieke)@GfM-AG.de

12 August 1999

Abstract

This paper presents a method that enables Web users to surf anonymously such
that neither the requested content nor the referencing URLs are traceable by some-
one who has access to the user’s local storage, especially the history files. This is
achieved by scrambling the “filename part” of the accessed URLs on a per-session
basis. The method builds on standard encryption techniques so that packet sniffing
is also made impracticable. These features provide the user with privacy that he
might desire as an employee in a company that analyzes the employees’ surfing
behavior. A combination of these techniques with already established anonymiz-
ing proxy services1 is presented. This provides increased privacy both towards the
Web service and towards the employer. The latter is true because, together with the
encryption and URL scrambling, this obscures the Web server’s host name, only
exposing the proxy’s name.

1 Introduction

World Wide Web users expose information about their interests to many parties:

� Sensitive information like credit card numbers together with the user’s name may
be extracted of un-encrypted TCP/IP packets.

� Users may be re-identified by Web services through the use of cookies.

� Users’ surfing behavior may be tracked by analyzing their history and cache files.

The first problem has been addressed by encryption technology like Netscape’s Secure
Socket Layer (SSL) which emerged to the IETF standard Transport Layer Security
(TLS) [1]. SSL/TLS provides security by encrypting the TCP traffic between a browser
and a server. The amount of security depends on the length of the key used. Even with
key lengths of 40 bits mass sniffing of all traffic that is caused by Web surfing becomes

1e.g., anonymizer.com

1

impracticable, since the value of the gained information doesn’t outweigh the costs of
decoding.

Users may disable cookies and refuse to give their real name in order to prevent
Web services from filing their surfing behavior. In addition, there are anonymizer
servers that retrieve specified URLs for the user, concealing all details about the user
from the Web service.

But current anonymization techniques only address one side of the problem: con-
cealing a Web surfer’s identity from a remote service. Many organizations make use
of automatic traffic filtering and analysis tools. These include general packet sniffing,
dedicated E-mail filters, and Web browser cache and history file analyzers.2

Users can protect themselves by disabling caching and deleting history files. But
since in larger organizations user data is often stored on network devices, tools may be
conceived that analyze history files in real-time, access the surfed URLs, and retrieve
the content. In the most widespread current browsers, there are no means of disabling
history file logging. But even if there were, by imposing mandatory user profiles or-
ganizations could prevent users from reconfiguring their browsers. Since users usually
don’t bother to protect their privacy, it is desirable that they are lead to secure surfing
by the Web services, i.e., the Web services provide secure surfing facilities and place
links to these facilities on their Web pages.

The current paper doesn’t try to suggest how browsers could be improved to pro-
vide more security, but takes the currently available browsers like Netscape 3.x/4.x
and Microsoft 3.x/4.x/5.x as “given fate”. Strategies and technologies that provide in-
creased privacy rely on how these browsers handle caching, history logging, and secure
connections.

The remainder of this paper is organized as follows: section two explains the re-
quirements for the system that we propose. Section three presents the architecture,
section four the implementation of a working prototype. Section five concludes this
paper.

2 Requirements

To provide better privacy it is essential that the whole process is completely transpar-
ent for users. Therefore, our approach has to avoid the installation of a separate tool
for clients. A standard Web browser should be sufficient. The only requirements for
browsers are that they are able to open secure connections and accept certificates used
by the servers.

The resulting system will be used in a commercial environment, consisting of stan-
dard software like Web servers, application servers and databases. The changes that
are needed to employ this system in an existing environment have to be small. In
our approach, we only add functionality to an existing Web server without any further
changes to other server side applications.

Furthermore, the service the system provides has to be fast. It is possible to use this
service for many parts of a web site or even the whole site. If this service proves to be
the bottleneck for high performance it is very likely that it won’t be deployed.

2Examples for tools???

2

With the existence of dedicated tools that filter and analyze the surf behavior of
users, it is important that the technology presented in this paper is “sufficiently” secure.
The authors don’t recommend using this service exclusively in an environment with
very high security requirements because of possible vulnerabilities of the underlying
encryption technology. But, as mentioned earlier, it has to be impractical to log all
activities of users surfing on a web site enhanced with this technology.

3 Architecture

The system consists of two main parts: a Web server that is enhanced by several stan-
dard modules and the “scrambler”. The Web server is responsible to answer user re-
quests and to send the required documents to the clients. The scrambler resides in an
independently running process that communicates with the Web server. The two main
functions of the scrambler are scrambling plain URLs and resolving scrambled URLs
(SURLs).

The following figure shows the architecture of the system.

Documents

 Clients

Web Server

Proxy

Scrambler

Figure 1: Architecture

For a better understanding how the system works, we demonstrate the life cycle of
a scrambled URL:

The first user request consists of a plain, valid URL. The server locates the ap-
propriate document and parses it. Each URL found in this document is sent to the
scrambler. Now, two different cases have to be distinguished: either the URL refers to
a document that resides locally on the same server or it is an external URL. In the latter
case, a proxy is needed to retrieve the requested documents from external servers. This
proxy is described in a section of its own. In either case, it doesn’t matter which media
type is referenced and which HTML tag is used.

3

After a document is parsed and all URLs are substituted, the Web server sends the
document to the user. This connection is secured by the use of a SSL or TLS connection
between the Web server and the client. Therefore, the content of the document is
protected against packet sniffing.

Current Web browsers store URLs of visited web sites in a history list, even URLs
of securely received documents. This makes it possible for a tool to retrieve the same
document the user has requested. To avoid this attack SURLs are only valid in the
context of the same SSL/TLS session between client and server.

If the user requests an SURL the browser sends the SURL back to the Web server.
The Web server is able to determine whether the requested URL is scrambled and
contacts the scrambler, if necessary. The scrambler receives the SURL and examines
it. If it is not valid within the current session it denies access to the requested document.
Otherwise, it returns the appropriate plain URL to the Web server. Now, the Web server
can retrieve the new document.

Proxy Server

The scrambler is able to process both local URLs, i.e. URLs of documents that reside
on the same server, and URLs of documents that reside on other servers. The Web
server can easily retrieve a local document and send it to the user. But additional
functionality is needed to process external documents.

In the latter case, the Web server has to forward the request to the referenced server,
retrieve the requested document, scramble it and send it to the user. For the user, it is
not obvious that the requested document doesn’t reside on the same server.

This functionality is provided by a proxy server that retrieves requested documents
and stores them in a separate cache. This cache accelerates the access to the external
resources in case that they are requested again.

4 Implementation

Several existing technologies have been adopted to create a working prototype. We
used the open-source Web server Apache, enhanced by several existing modules, and
implemented the scrambler as a Java application.

The following publicly available packages have been used:

� Apache Web server – version 1.3.6, including the standard modules mod rewrite
and mod proxy

� SSL library openSSL – version 0.9.3a

� Apache module SSL – version 2.3.10

� Sun Java Servlet Development Kit – version 2.0

� Apache module JServ – version 1.0

� Apache module JSSI – version 1.1.2

4

The openSSL library combined with the Apache module SSL provides the func-
tionality for secure connections. Sun’s JSDK together with the Apache module JServ
provides support for using Java servlets. JSSI is a servlet that includes parsing func-
tionality.

The following figure demonstrates the architecture of our implementation:

proxy
cacheScrambler

Scrambling
 Servlet

Documents

 Clients

Web Server
 Apache

Module
 proxy

Module
rewrite

Module
 SSL

Module
 JServ

Figure 2: Architecture of the implementation

4.1 The URL scrambler

In our prototype, the URL scrambler is written in Java and starts as a separate process.
On the one hand, this may have performance disadvantages. On the other hand, the
flexibility of Java made it possible to develop the prototype quickly.

The scrambler communicates with the Apache server over sockets. One commu-
nication channel is needed to connect with the document parser. The other channel
connects with the module “rewrite” that rewrites requested URLs.

For each user connected to the server the scrambler maintains information about
the session. This information consists of the SSL session id and a hash table of URL-
SURL pairs, which ensures the fast lookup of requested SURLs. The SSL session id is
a string with 64 hexadecimal characters. It is created by the SSL Apache module and
can be assumed to be unique.

Each time a URL is sent, the scrambler tries to find an existing session. If no session
is found a new session is created. Otherwise, the existing session is reused. The SURL
that is created subsequently consists of the session id and a document id that is unique
for this session.

Whenever an SURL is received, the scrambler retrieves the session id and checks
whether this session id is valid, i.e. whether it is identical to the current SSL session
id. In this case, a lookup follows into the appropriate hash table to find the URL

5

belonging to this SURL. If there is a URL, it is returned. Otherwise, the SURL is
returned unchanged, leading to an error message generated by the Web server.

For example, the URL in an HTML document might look like
/test/test.html,
whereas the generated SURL the scrambler produces might look like
https://localhost:8443/secure/83628AF54D[...]8A8234F0000.

4.2 The servlet module

We used a servlet engine and an existing servlet written for the Apache Web Server
to facilitate the communication with the scrambler while parsing a requested HTML
document. This servlet parses the document and provides hooks to add special handlers
that cope with specified HTML tags/attributes.

We used this functionality to create handlers for all HTML tags that contain refer-
ences to other resources. These handlers extract the referenced URLs, send them to the
scrambler and replace them with the resulting SURLs.

4.3 The URL rewrite module

The standard Apache module “mod rewrite” is used for translating incoming SURLs
into URLs. If installed this module can be configured to translate arbitrary requested
URLs into another form. Rules determine which requested URLs the module modifies.

In our case, the module starts a perl script that communicates with the scrambler
over a socket. Every time a requested URL has the form “/secure/...” this script
sends the requested URL to the scrambler and gives the result back to the rewrite mod-
ule. The rewrite module in turn makes the Web server process the modified URL
instead of the requested one.

5 Limitations

Although the system is working well, there are several limitations some of which are
caused by the modules we have chosen to adopt. But there are also general restrictions
of such a system.

The servlet engine that we use allows only to start servlets for documents with spec-
ified extensions. For example, a document called start.html has the extension .html and
is recognized. Documents that don’t have a common extension won’t be recognized
and, therefore, won’t be scrambled.

Documents that incorporate script code, for example JavaScript which is commonly
used, cause more serious problems. Within the script code URLs can be stored that are
not easily detectable because they are not embraced by special tags. It might be possible
to apply heuristics in such cases, but these heuristics will presumably not always work.

Furthermore, new technologies are emerging rapidly that do not rely on standard
HTML. Using Java/XML solutions that render data on the client’s side, for example,
makes it impossible to use a scrambling service on a Web server. Every time new
technologies emerge changes for the scramble might be necessary to keep it working.

6

6 Conclusion

This paper gave a short overview over existing issues in the area of privacy for WWW
users. It demonstrated that it is possible to increase the protection of privacy of users
without adding new technologies on the client side. Rather, it demonstrated and ex-
plained a system that enhances Web servers. This system is capable of modifying
URLs in HTML documents is such a way that it is only possible for the same user to
retrieve the according documents.

The authors are aware that this system doesn’t provide perfect protection for users.
For example, it might still be possible to create tools that manipulate Web browsers
directly to get access to the content of a retrieved document.

On the other hand, the proposed system is one more step to protect users from
being kept under surveillance. Therefore, the authors would like to encourage web site
administrators to use the proposed system to offer their users more security.

References

[1] Specification of Transport Layer Security (TLS) protocol v1.0:
ftp://ftp.isi.edu/in-notes/rfc2246.txt

7

