
Using a Profiler Efficiently
Strategies that Help you to Find Performance Problems

and Memory Leaks

Tim Wellhausen

kontakt@tim-wellhausen.de
http://www.tim-wellhausen.de

May 24, 2009

Abstract: Sooner than later most software development projects suffer from
severe runtime problems. When features are given top priority, caring for
non-functional requirements such as performance or stability is most often
postponed during the initial development phase. Once a system is in produc-
tion, however, performance problems and memory leaks quickly catch more
attention. A Profiler is a very useful development tool to find the causes of
these problems. Using a Profiler is not that easy; you need good strategies to
detect the actual causes. This paper gives you advice how to use a Profiler effi-
ciently.

Introduction
Performance problems and memory leaks are encountered in many software development
projects. Unfortunately, they often have subtle causes that are not apparent by introspect-
ing the code. In particular, complex, multi-layered software systems are hard to debug to
find these causes.

Just as a Debugger is the tool at hand to track down problems that affect the correctness
of a software system, a Profiler tool can be very useful to trace performance problems and
memory leaks. Only a Profiler gives you an accurate view on what's happening inside the
system either over a period of time or at a specific point of time.

A Profiler supports the analysis of a software system at runtime: (1) by finding the causes
of real or perceived slowness of a system, i.e. those parts of the system that consume more
time to fulfill a functionality than they should take or (2) by finding the causes of memory
leaks that exhaust the available memory until the application runs very slow or stops run-
ning at all.

This paper presents usage patterns that cover both aspects of using a Profiler. The patterns
are independent of a specific Profiler product. However, there are some products that
support all usage patterns, whereas other products only support some of them. This paper
neither gives you an overview of the available products nor explains their completeness
regarding the patterns.

Note that this paper assumes that you are already familiar with the Profiler tool of your
choice, i.e. that you know how to start a Profiler session and how to take a memory snap-
shot, for example. Also note that this paper only addresses Profiler products with a rich
graphical user interface; Profilers that only record data in text form are out of scope.

Although the patterns are not dependent on specific technologies, they are based on ex-
periences in profiling object-oriented, single- or multi-layered software systems that are
developed on a technological platform that involves garbage collection at runtime (for ex-
ample Java and .NET). It has not been deeply analyzed yet how valid the patterns are if
applied to other programming languages and platforms, in particular to the area of embed-
ded software.

The patterns are presented one by one. Each patterns has a short problem and a short
solution statement, written in bold font. To get an overview of the pattern, you may first
just read these statements for each pattern. Then, you may read the patterns one after an-
other or you may start by reading the first pattern, Think about it first, and then follow
the recommendations as given in the patterns' descriptions.

At the end of the paper, you can find an Examples section that shows how the patterns
can be applied in sequence, illustrated by real world applications. After that, you can find
references to other resources about profiling.

- 2 -

Think About it First
You are responsible to analyze a software system to detect the cause of its severe perform-
ance problems or memory leaks. Maybe you always have a good gut feeling of possible
causes for such problems; but so far, you don't know the causes yet.

How do you start solving the performance or memory problems of a software system?

As a software developer you are accustomed to find solutions for given problems. If you
don't know the exact reason for a problem, you might, for example, be tempted to start
developing a solution that incorporates well-known design patterns to improve the per-
formance of your software system in general, such as an object cache or a resource pool.

But without knowing the actual causes, you cannot be sure that any changes you perform
on the software system actually improve the performance or remove the memory leaks.
Whatever you are doing might simply add complexity to your software system but may
not improve it. Or even worse: may introduce new bugs to previously running code.

Therefore:

Don't guess what the causes of the problems might be because quite often you're go-
ing to be wrong. Instead, use a Profiler to analyze your software system!

What sounds like a mundane advice already is the single most important advice this paper
has to offer. If you don't know the actual reason for a performance problem, don't be in-
duced to prematurely start coding a solution, even if you believe that this solution might
solve the problem. More often than not, the real troublemaker is more subtle than you
might think on first sight.

By using a Profiler you can double-check whether your assumptions are right. If are are
right, go on and develop the solution you had in mind. If you are wrong, however, be re-
lieved that you have spared yourself from unnecessary work and that you have saved the
system from unnecessarily adding complexity.

If you are not the developer who has originally written the software system, chances are
that you do not know the complete functionality of the system. In this case, there are
hopefully test documents that contain step-by-step instructions for each essential use case
or process of the system. Having such instructions at hand, you can more easily profile
the system to understand both its functionality and runtime behavior.

Naturally, there are cases when your gut feeling is right. If you never trust your guesses
but always check first, you might lose time fixing your software system. So there is a
trade-off to make when time is the most limited resource at hand. In this case, it may help
to time box any efforts following your gut feeling. Additionally, learning and applying
tools is much effort that you need to afford in your project.

If the system runs slow, you should begin the profiling session by Finding Performance
Anomalies. If you guess that the system suffers from memory leaks, Check for
Memory that the software system consumes at runtime.

- 3 -

Find Performance Anomalies
Your software system runs slower than you think it should. The normal workflow seems
to be okay but some deviations happen. You don't know yet why.

How do you start tracking down performance problems?

Some performance problems may materialize at places and at times that are not obviously
connected to their real causes. If you delve down into details at once, you may miss the
actual causes and get lost in too much information that does not lead you anywhere. Get-
ting lost in such a way often is frustrating and may make you stop profiling and start
guessing what the reasons might be.

If you don't know the software system very well, you might not easily distinguish
between acceptable and unacceptable performance. Some parts of the system behave bet-
ter than others. How do you know which behavior is good enough and which is not ac-
ceptable any more?

Randomly trying to perform some actions to get an impression of the system performance
is like looking for a needle in a haystack. You can easily spend a lot of time without get-
ting any hints where to look closer.

Therefore:

First get a general impression of how fast typical operations execute. Then try to find
anomalies by comparing more specific actions with these numbers.

Only seldom do all parts of a software system suffer equally from performance. Skimming
over many parts of a system should give you a good impression of the overall characterist-
ics you might expect. You could, for example, set the fastest non-trivial operation as a
benchmark for all other operations. Those operations that differ considerably from this
benchmark are the best candidates for closer inspection.

The more often you try to find performance anomalies, the better you get to know the
performance characteristics of your system. By doing this on a regular basis, chances are
better to more quickly spot and improve performance problems.

Always observe the size of the data set that your system operates on. For a realistic com-
parison, the data set size of several operations should be roughly equal.

Getting a good general impression may be difficult if the software system behaves incon-
sistently, i.e. differently at different times, in particular if there are active background
threads running. Also, if the system contains several performance problems at the same
time, it may be very complicated to judge how fast typical operations should execute.

By comparing performance characteristics you should be able to identify at least some
parts of the software system that you need to inspect more closely. As next step, you
should Isolate Actions.

In case the system does not reveal performance problems under normal load: Stress it.
Because using a Profiler slows down the machine on which the Profiler and maybe also
the system itself are running, you should try to Minimize the Profiler's Overhead of
using the Profiler.

If it is difficult to reproduce performance problems on a local workstation, Profile the
Real Thing; if you are not allowed to profile in a production environment, Clone
Production. In both cases, try again to Find Performance Anomalies.

- 4 -

Check for Memory
Your software system behaves unreliably. You don't know yet why.

How do you find out whether the software system suffers from memory leaks?

There might be many reasons why a software system does not behave as it should. Some
reasons are internal to the system (e.g. a memory leak), some are external (e.g. hardware
failure). Before you make any changes to your system you need to be sure that the prob-
lem is caused by an internal error.

A memory leak may manifest itself by an obvious system event like an
OutOfMemoryException in case of Java. But in particular if the system has a lot of
memory available, it may take a while until the memory has run up and such obvious mes-
sages are shown.

If your system is interactive, use the software application as a user would do. If the
system executes batch jobs, manually trigger jobs as they would normally run. In
both cases, closely watch the system's memory consumption.

If the system actually has a memory leak, you should notice that the memory consump-
tion of the system increases over time. Be aware that a Profiler typically shows the
memory consumption as the size of all objects that are currently alive. Some of these ob-
jects may not be in use any more. Therefore, you should watch the activity of the garbage
collector and, if necessary, regularly trigger a garbage collector run to watch the size of
objects in use over time.

Even if the memory consumption increases over time, this must not necessarily indicate a
memory leak. Other causes might be data caches that fill up over time, additional code
that is loaded at runtime, data that is stored in a session as long as a user is logged in, or
data sets whose size increase.

You therefore need to have a good general knowledge about the software system to be
able to distinguish between acceptable and unacceptable memory increases.

Once you know that the system has a memory leak, you need to Isolate Actions that
are responsible for the memory leak. If the memory leak causes a proliferation of objects,
chances are that the Profiler puts your local system under heavy load while keeping track
of what's happening inside your system. In that case, Minimize the Profiler's
Overhead.

- 5 -

Minimize the Profiler's Overhead
You intensively use a Profiler on a local workstation to track down performance or
memory problems.

How can you avoid that the Profiler itself negatively affects the application?

In a real-world application, many operations are executed in a short period of time. With-
in a couple of seconds, millions of objects may be created and disposed, and thousands of
operations may be called. Because the Profiler cannot guess the reasons of the problems at
hand, it has to collect all available information to present to you the most accurate view of
the internals of the software system.

To monitor a software system in every detail, the Profiler itself consumes many resources,
i.e. it needs a lot of memory and takes a considerable amount of time. Using a Profiler
may therefore consume so many system resources that the software system to analyze is
negatively affected. Connections may time out, network packets may be dropped, or the
graphical user interface may become too slow to use.

Therefore:

Before you start a profiling session, reduce the amount of information gathered by the
Profiler to the absolute minimum.

Most Profiler products provide a multitude of options to control the behavior of the Pro-
filer itself. As most Profiler products support both the analysis of memory consumption
and the analysis of runtime performance, they also support selectively turning these fea-
tures on and off.

Some more sophisticated Profilers give you detailed control of the granularity with which
the Profiler acts. This means, for example, if you need only a general impression of the
memory usage, it may not be necessary for the Profiler to record every object creation but
to take snapshots of the memory consumption every now and then.

Quite a few Profiler products provide the possibility to start and stop the collection of
data at runtime. This means, you are able to initially turn off most options to let the soft-
ware system start without interference by the Profiler. As soon as the system is ready for
profiling, you can selectively turn on the collection of required information.

The more settings the Profiler product provides the better you may thus minimize the
overhead of monitoring the software system. But this also mandates that you are aware of
what exactly you need to know about the software system. If you turn off some options
to gather information, maybe you miss exactly those information that would help you to
understand the cause of the problems. In particular, if changing these settings dynamically
is not possible, it may be cumbersome to restart the Profiler to change the settings and try
again.

Another way to minimize the impact of the Profiler itself may be to Isolate Actions
and to turn on the profiling only for performing the actions that you would like to ana-
lyze isolated from all other actions.

- 6 -

Isolate Actions
Your application has performance problems or memory leaks and you've got a good gen-
eral impression of the runtime behavior of the whole software system.

How can you track down the reasons for the problems at hand after you got first in-
dications of what they are?

Because a Profiler can give you a wealth of information, you may easily get lost. In partic-
ular, if you more or less randomly execute some functions of the software system, you
will have a hard time to isolate the problems.

Therefore:

Follow a Divide and Conquer strategy, i.e. perform distinct actions, preferably small
steps at a time, and check the outcome of the Profiler after each action or step.

You first need to come up with a sequence of actions during which you assume that the
problem takes place, i.e. during which the memory consumption increases significantly or
the execution time of the operations is far too long. After each step, check the data the
Profiler presents to verify that the step performs as it should be.

By pursuing a divide and conquer strategy, you may start with more coarse grained steps
until you find a peculiar step. Then split this step into several smaller steps and repeat
these steps until you find that step that is responsible for the problem.

Be aware that caches and background threads may alter the results of successively per-
forming the same operations. If that is possible, disable these caches and background op-
erations while trying to isolate the actions that cause the actual problems.

This pattern can only be applied for actions that can easily be executed repeatedly. In par-
ticular if some problems only appear during the system's startup or in the last seconds be-
fore the system crashes, it is very difficult to isolate them.

You should also always be aware that you may drill down into the software system at the
wrong location. If you realize that you analyze the wrong part of the system, track back
and start over. If you do this several times in a row, stop the Profiler and think over your
assumptions. It may help to either Find Performance Anomalies or Check for
Memory again.

If you are tracking down a performance problem, it may help to Repeat Actions to get
more significant numbers. If you need to analyze a memory leak, try to Come Full
Circle to more accurately compare memory snapshots.

- 7 -

Repeat Actions
The software system to profile has subtle performance problems. You have some candid-
ate actions in mind that probably cause the problem.

How can you clarify the cause of performance problems?

Even if you are able to isolate suspicious actions, those operations that are actually too
slow may not be obvious. It could be, for example, that some operations have a big up-
front initialization overhead that tamper the results. It could also be that some operation
have a higher intrinsic complexity than others, which does not stick out clearly.

Some software systems do not behave the same every time the same operation is executed.
Depending on a lot of different factors, a software system may be slowed down temporar-
ily. The reasons may be worker threads in the background such as the garbage collector,
event processing, etc.

Therefore:

Execute the candidate actions multiple times in a row to suppress side effects and to
magnify the actions' effects on the system's performance.

If you execute the same action several times in a row, side effects such as background
work or initialization effort diminish against the actual complexity of an operation. The
more often you repeat an action, the less weight statistical mavericks have.

Repeating an action may be achieved by manually starting the same action over again or
by letting the action be executed automatically. If a software system needs to evaluate
lines of a text file, for example, you could provide a bigger input file. In particular repeat-
ing an algorithmic operation often gives you a good view on its intrinsic complexity.

This pattern can easily be applied if the software system has a graphical user interface with
which you may start and restart an operation without significantly changing the state of
the system. If you need to perform heavy-weight actions to reset the system and execute
again the action, this may already tamper the performance evaluation too much to get
meaningful results. This pattern can also not be applied successfully if the cause of the
performance problem is part of the initialization work or if the problem cannot be repro-
duced because it relies on side-effects.

If you repeat actions but still cannot clearly identify the reasons for the performance
problems of the software system, you could Stress it or try again to Find Performance
Anomalies. It may also help to drill down into the actions that you have repeatedly ex-
ecuted and try to Isolate Actions again.

- 8 -

Come Full Circle
The software system to profile has a memory leak and you have been able to isolate the
action that causes the leak.

How can you identify the actual objects that cause a memory leak?

A memory leak appears when some memory has been reserved but not set free after its us-
age. This means, every memory leak is caused by an operation that reserves memory,
holds it, and does not set it free when it is no longer needed. You must therefore find this
operation.

Every operation that the software system executes may change the memory consumption.
By analyzing an arbitrary snap shot of the memory consumption, it is hard to tell which
objects are in regular use and which objects should have been given free earlier.

Therefore:

Find a sequence of actions that includes the offending action and that leaves the soft-
ware system in the same state as before. Then compare the number of living objects of
the same classes and identify those that have been increased but should not have.

If the software system has a graphical user interface you may be able to open a dialog, ex-
ecute an operation and close the dialog again to free all resources needed by the dialog. If
the memory leak appears in a part of the software system for which no graphical user in-
terface exists, you may trigger system jobs that execute the actions and leave the system in
the same state as before.

In each case, you need to mark the state of memory consumption of the software system
as reference before you start to execute the sequence of actions. After the sequence of ac-
tions is executed, you may compare the state of the memory consumption to that refer-
ence. Many Profiler tools provide a function to set a marker against which the memory
consumption is permanently compared.

To be successful, you need a close understanding of the objects involved in the actions be-
cause you need to find those objects that do still exist at the end of the sequence but
should not exist any more. Depending on the platform, the programming language, and
the settings of the Profiler, you may need to explicitly trigger a garbage collector run to
remove all unused objects before you can analyze the memory consumption in detail.

Applying this technique is very difficult if the software system changes its internal state
and therefore changes its internal memory consumption during the execution of actions
that come full circle. You then need to check very closely which objects may still exist and
which objects may not. It might also be necessary to stop any work done in parallel on
background threads or by asynchronously started jobs.

If you have found the objects that actually cause the memory leak, you may still not know
the reason for their existence. Try to Trace the Roots to find the reason why they have
not been removed from memory. If you're stuck because your assumptions about the
memory leak have mislead you, try again to Check for Memory.

- 9 -

Trace the Roots
You have found a memory leak, i.e. identified objects that still exist in memory when they
should not exist any more.

How do you find the reason why offending objects are still in memory?

It may be straightforward to find objects that are still alive but should not. But the pure
existence of these objects does not explain why they still exist. There may be many places
in the source code where these objects have been created, they may have been passed as
parameters to many methods, and they may be referenced from many other objects.

Even if you have identified the objects by coming full circle, maybe many steps were ne-
cessary to return the system to the same state as in the beginning. Manually introspecting
the source code that has been executed by all of these steps may just not be feasible.

Therefore:

Create a snapshot that includes all living objects and pick a single object that should
not exist any more. From this object on follow the incoming object references until
you reach the root object that is responsible to hold the whole chain of objects.

To apply this pattern, you need a Profiler tool that has a graphical view on the network of
interconnected objects of a memory snapshot. This means, you should be able to choose
any living object and expand all of its incoming object references graphically. You need to
recursively check the incoming references of all referring objects until you find an object
that is valid to exist.

If your technological platform incorporates a garbage collector there are always garbage
collector roots, i.e. static objects that may never be removed. All objects that can be
reached by object reference chains from these roots are also never removed from memory.
You therefore first need to identify the chain of object references from the offending ob-
ject backwards to a garbage collector root. Then you need to analyze this chain from the
garbage collector root on to find the first object reference that should not exist any more.
For example, on the object reference chain, there may be a list that should be empty but
still contains object references. The actual cause of the memory leak in this case is the code
that has not properly emptied or disposed the list.

Manually searching for garbage collector roots may be a very challenging task. Some Pro-
filers provide an option that performs the search for the garbage collector roots automat-
ically. Using such an option, the Profiler tool presents the chains of object references you
are looking for. Note that quite often there is not only one such chain but several such
chains. You should therefore always first search for a single chain, analyze it, discover the
actual bug, fix the bug, and restart both the application and the Profiler to determine
whether there were multiple causes that need to be fixed separately.

The fewer connections the software system has at runtime, the easier it is to use this tech-
nique. Having a clearly structured system with defined dependencies between internal
layers helps a lot to cut down on the number of interconnected objects and therefore sig-
nificantly reduces the effort to find garbage collector roots. Some software systems, in
particular rich or fat client applications typically have a huge number of object references.
Manually searching for garbage collector roots is very difficult in these cases.

- 10 -

Stress it
Your software system behaves well when you test it but loses performance under high
load.

How do you find performance problems that do not appear when your software sys-
tem runs in normal operation?

Some performance problems are caused by ill-designed algorithms. These problems can
typically be found more or less easily by Repeating Actions. Once you have picked
these low-hanging fruits you need to address performance problems that do not always
manifest because they may be the results of many interconnected causes that only appear
under high load.

You could try to Profile the Real Thing to find the performance problems in the real
production system. But quite often this is not feasible: The system may not be ready for
production yet, or it is too critical to risk profiling it in the production environment. But
without real users, the system may still behave nicely.

Therefore:

Employ a tool that artificially creates a high load on your software system by simulat-
ing multiple simultaneous user actions while you profile the system.

There are many tools available to stress test a software system, may it be a rich-client or a
web-client application or a system without a graphical user interface. The common de-
nominator of all of these tools is that they are able to simulate the behavior of typical
users and that they provide the option to easily scale the number of simultaneous user re-
quests on your system.

Using such a tool, you must first try to identify the typical behavior of the users of your
software system. Analyzing the logs of the system or just asking some users may give you
an impression of their typical usage. Then you need to simulate and automate the user ac-
tions so that they can be replayed by the tool. By slowly increasing the number of simu-
lated simultaneous users you may find the threshold from which on the system does not
behave as desired any more.

This technique may reveal performance problems that only manifest in the production
system otherwise. However, it cannot reproduce all problems. Some problems are caused
not only by a high system load from many users in parallel but by specific properties of
the production environment such as the operation system or the server hardware. In these
cases, you should Profile the Real Thing or Clone Production and stress test the
software system running in a production environment.

If you simulate too many distinct user actions at once, it may be difficult to track down
the causes of the problems under high load. In that case you could Isolate Actions and
Stress It again, now executing fewer actions at the same time.

- 11 -

Profile the Real Thing
Your software system suffers from performance problems in the production environment.

How do you find performance problems that you cannot reproduce on a local de-
veloper's machine?

Setting up a Profiler on a local developer's machine is easy and straightforward in most
cases. Still, most often a local machine is configured differently from a production envir-
onment, i.e. on the production environment a different operation system may be installed,
operation system settings may differ, or there may be more memory or disk space avail-
able.

Furthermore, some problems may be caused by the environment in which the production
machine runs, in particular causing slow network connections, latency problems, or
blocked reverse DNS lookups. All of these differences may be the reason for performance
problems that do not manifest elsewhere.

Therefore:

Take on the effort to install and set up a Profiler tool in the production environment
and run your tests there.

There are two options to perform profiling tests on the production environment. The
more intrusive option is to locally start a Profiler tool and to let it remotely connect to the
productive software system. This allows you to deeply analyze the behavior of the soft-
ware system while it is running.

The less intrusive option is to install a Profiler tool on the production machine that runs
there locally, measures the productive software system, and stores information about the
runtime behavior in the local file system, for example in flat files. This means, the profil-
ing information is not evaluated at runtime. Instead, you need to periodically get the pro-
filing information and start the graphical user interface of your Profiler tool on your local
machine to analyze the collected information. While this option is easier to sell to operat-
ors, it prevents you from selectively performing actions and analyzing the systems' beha-
vior.

This advice probably is the most difficult to follow because in many companies there is a
strict separation between developing and operating a software system. You may need to
convince managers from other teams to allow you to profile your software system in their
production environment and you may need to convince the operators whose support you
need to actually run any tests. Both tasks may be impossible to achieve. Still, only in the
production environment you may be able to analyze problems that appear exclusively
there.

After successfully setting up the Profiler tool in the production environment, you should
Find Performance Anomalies to get an impression of the runtime behavior of your
software system on the production environment. As alternative to profiling the software
system in the production environment, in particular if you are not allowed to install a
Profiler tool there, you may try to Clone Production. If the performance problems are
caused by high load rather than by specific settings of the production environment, stay
with profiling a development system and Stress it.

- 12 -

Clone Production
Your software system suffers from performance problems in the production environment.

How can you profile the software system when you must not install a Profiler tool in
the production system?

Some problems only appear in the production environment and cannot be reproduced on
a local developer's machine. Profiling the software system locally therefore does not help,
profiling in the production environment, on the other hand, is not allowed.

You could try to use profiling techniques that do not depend on a Profiler tool, for ex-
ample gathering as many information as possible in log files. Although it is generally a
good idea to write as many relevant information as possible into log files, you cannot re-
trieve everything of interest from inside the application itself. Besides, changing existing
code that has been tested to gather profiling information may not be a good idea as you
may have to test again the complete software system. Also, you may not be able to deploy
changed code at will but only according to a release plan.

Therefore:

Set up a dedicated test environment that is a clone of the production environment, i.e.
that runs on the same hardware and uses the same operation system settings, and pro-
file the software system there.

To set up a test environment, you probably need management support. Typically, the test
environment cannot be set up by the development team and setting up a clone of the pro-
duction environment is expensive, in particular if exactly the same hardware should be
used as in the production environment.

To reduce the costs of cloning the production environment, you could try to scale down
the test environment without changing the overall characteristics of the system. You could
achieve this, for example, by using fewer processors (but still having more than one) or by
reducing the available memory.

A clone of the production environment has many benefits other than easier profiling.
Most development projects already have distinct environments for development, test, and
production. In that case, you should employ the existing test environment for profiling.
You probably need to coordinate any profiling tests efforts with functional test efforts
carried out by the test team.

A common problem in cloning the production system is the availability of production
data. As this data must often be protected from public access, it might be necessary to cre-
ate an anonymous clone of production data that obfuscates the original context.

The biggest disadvantage of cloning the production system is the effort of keeping the
clone in sync. After the initial effort to set up the cloned environment, you need to reflect
all changes applied to the production environment. If not, you may not be able rely on the
results from testing on the cloned system any more.

After successfully setting up the Profiler tool in the cloned environment, you should Find
Performance Anomalies. Cloning the production system alone may not reveal the
problems of the software system if these problems do only appear under high load. In that
case, Stress it.

- 13 -

Unfinished Patterns
There are more patterns on how to efficiently profile a software system than have been
presented so far in this paper. This section gives an overview of patterns that have not yet
been elaborated in detail.

Reduce Moving Parts
How do you reliable measure the current
performance of your software system?

Stop all background threads and schedulers
that might start new threads.

Design for Profiling
How do you facilitate profiling your soft-
ware system?

Design the system in such a way that pro-
filing parts of it independently becomes
possible, for example by employing a
layered and component-based architecture
and by making it possible to stop back-
ground work.

Have a Mental Map
How do you improve your ability to
quickly find performance problems and
memory leaks?

Try to always have a mental map of the
complete system and compare the results of
all profiling operations with your expected
outcome.

Let the System Warm Up
How do you avoid side-effects when meas-
uring the system performance?

Let the system warm up before you start
any measurements so that, for example, all
caches are filled with data.

Act as a User Would Do
How can you increase the chance to detect
performance problems and memory?

Operate the system as a real user would do,
i.e. execute complete use cases without fol-
lowing shortcuts.

Bring Real Users in
How can you increase the chance to detect
performance problems and memory leaks if
you don't know what the users are doing?

Bring in real users and let them operate on
your test system while you closely watch
the system's behavior.

Strangle the System
How can you stress your system if it still
works quite well under high load or if you
cannot produce a very high load?

Limit the resources that are available to
your software system, for example, by re-
moving memory or CPUs.

- 14 -

Examples
To relate the given patterns to the real world, this section gives some examples of how the
patterns can be applied. The first example shows how to track down memory leaks, the
second how to find performance bottlenecks.

Both examples are based on real, open-source applications. Please note that the bugs that
are going to be found in these applications have been artificially introduced for the pur-
pose of this section. They have never existed in the original distributions.

Tracking down a Memory Leak

The first example is based on the application FreeMind (freemind.sf.net), which is a free
and open-source mind mapping tool. FreeMind is a fat client application, developed in
Java.

Assume that you are the developer of FreeMind and that you've just got a bug report
from a user. The user complains that the application crashes after editing a mind map for
some time. This seems to be a serious problem, so you decide to track down its cause.

The user also sent you a stack trace of the application that shows an OutOfMemoryError,
which is an indication that the application probably suffers from a memory leak. You
know that there are some cases where you have not properly cleaned up objects before
disposing them. But instead of guessing, you decide to start the Profiler to have a closer
look to avoid introspecting and maybe changing code that is not responsible for the prob-
lem at hand.

As the user did not report a specific action that he or she performed just before the crash,
you decide to first get a general impression of the runtime behavior of the application.
Started under the control of the Profiler, the application comes up and you begin to draw
a mind map.

You haven't noticed any problems so far, the application runs smoothly; the problem does
not seem to appear immediately. However, a look at the memory consumption reveals
that something went wrong.

- 15 -

Check for
Memory

Think
about it
first

For a reason you don't know yet, the memory consumption grew steadily. The garbage
collector ran several times, freeing resources that were not needed any more, but after
each run, the used memory increased. To get any further, you need to understand better
which action causes the leak.

Therefore, you start to selectively perform actions to edit the mind map and closely check
the memory consumption after each step. To check the actual memory consumption at a
time, you trigger the garbage collector after each step. After a short time you suspect that
editing an existing node of the mind map might cause the problem. But you need to verify
this assumption.

You assume that the dialog to edit a node might be the cause of the problem. To reliably
check the memory consumption of editing a node, you decide to measure the difference
before opening and after closing that dialog.

In order to compare the memory consumption, you first trigger another garbage collec-
tion run and then mark the current values. After that you open the dialog, edit some text
and close it. After triggering another garbage collection run, you have a close look at
which objects do now exist that did not exist earlier on.

Among many other objects that don't look suspicious you discover that there are still ref-
erences to the dialog class that you've just used to edit the node.

In particular, there is now one object more of the class than before. Now you know the
reason for the memory leak: a dialog object has not been removed from memory after the
dialog window has been closed. Nevertheless, you don't know yet why this happens.

To further understand the problem, you decide to analyze the object graph to find out
which objects still hold references to the dialog object. Instead of manually checking all
incoming object references to a dialog object, you utilize the Profiler's function to search
for garbage collector roots. After a short time, the Profiler shows the first path to such a
root.

The graph tells you that the dialog still exists in memory because it is referenced by its
native peer object. Because you know the basics about developing a dialog with Java's
GUI library Swing, you are sure that somewhere in your code, you forgot to properly
dispose the dialog after it is closed.

- 16 -

Isolate
Action

Come
Full
Circle

Trace the
Roots

You switch back to your IDE, open the source code of the dialog class into an editor and
find the right spot where you made the dialog invisible instead of properly disposing it.

You are relieved to have found the bug so quickly, immediately create a new version of
the application and send it to the user that reported the bug.

Discovering Performance Bottlenecks

The second example is based on the application blojsom (blojsom.sf.net), which is a free
and open-source blog software. Blojsom is a web application, developed in Java.

Once again, please assume that you are a developer of blojsom. You have worked hard to
finish a new version and are almost ready to publish it. As a last step, you use the software
as a normal user would do to find any obvious bugs that have gone unnoticed before.

The application seems to be slower than usual. Maybe some changes you did have deteri-
orated the performance. Maybe it's just because of the new features that you implemen-
ted. One feature in particular could be improved by adding a cache to prevent some unne-
cessary database calls from happen. But because you want to avoid unnecessary work, you
decide to have a closer look before making any changes.

You set up a new and clean database without any prior blog entries and start up the web
server. Still without using the profiler, you create a few categories on the admin pages and
then write some blog entries and comments.

- 17 -

Think
about it
first

Find
Perfor-
mance
Anomalies

You realize that while the administration pages work as usual, blog pages seem to load
slower than before.

Because the Profiler tool may affect the runtime performance of the application, you want
to minimize the side effects of using the Profiler tool. You start the tool and change set-
tings so that the Profiler only records performance data and nothing else. You are quite
sure that the problems are not caused by the initialization of the application; therefore
you start the server with no profiling at all and wait until the application is properly ini-
tialized.

You don't want to get lost in too many details too soon and therefore decide to perform
several distinct actions in a row and to then look at the information the Profiler has collec-
ted meanwhile: you create a new blog entry, look at the entry, and write a comment. After
these operations, you open a view in which the Profiler tool shows those methods that
took the most execution time.

On the first look, everything seems right. You are wondering however why the database
calls (Criteria.list) from the method findEntriesBetweenDates took to long. You
know that this method is called from the calendar view on the right hand side of the blog
page.

To verify your assumption, you reload the main blog page a couple of times by constantly
pressing F5 in the browser. The rendering of a blog page is not affected by any data cach-
ing so that each call should cause the same number of database calls. Then, you have an-
other look at the same view of the Profiler tool.

- 18 -

Minimize
the
Profiler's
Overhead

Isolate
Action

Repeat
Action

You notice that the amount of time spend in Criteria.list has relatively increased a
lot. You also notice that for each page request, this method is called once from
fetchEntries but much more often from findEntriesBetweenDates. This does not
seem to be right.

You start your IDE, open the respective source file, navigate to the method
findEntriesBetweenDates, and immediately find the following code:

Suddenly you realize that you began to implement a feature for which you needed to visit
the category objects of all blog entries. You did not finish developing this function but the
code that you left causes another database round trip for each blog entry. Besides the fact
that this code is written very inefficiently, it does not even make any sense right now.

So you remove the code and take another look at the performance measures from your
Profiler tool. Now that everything seems right you publish the new version of the applic-
ation.

- 19 -

Acknowledgements
I would like to thank Sachin Bammi who gave important feedback as my shepherd for the
EuroPLoP 2008 conference. I'd also like the thank the participants of the EuroPLoP 2008
workshop for their well thought-out and constructive comments and suggestions. In par-
ticular the section with unfinished patterns is based on their input. I hope to write a fol-
low-up with the new material in more detail soon.

Resources
As far as the author is aware of there is no related work in pattern form that explains how
to profile a software system. This section therefore presents references to other resources
that explain the usage of Profilers in a more general form.

[1] List of profiling tools for Java:
 http://www.javaperformancetuning.com/resources.shtml

[2] Jim Patrack, Handling memory leaks in Java programs:
 http://www.ibm.com/developerworks/java/library/j-leaks/

[3] Brian Goetz, Java theory and Practice: Plugging memory leaks with weak references,
 http://www.ibm.com/developerworks/java/library/j-jtp11225/index.html

[4] Tess Ferrandez: If broken it is, fix it you should. A blog about debugging and profiling
 .NET applications, http://blogs.msdn.com/tess/default.aspx

- 20 -

